MIT Autonomous Vehicle Technology Study: Large-Scale Deep Learning Based Analysis of Driver Behavior and Interaction with Automation

نویسندگان

  • Alex Fridman
  • Daniel E. Brown
  • Michael Glazer
  • William Angell
  • Spencer Dodd
  • Benedikt Jenik
  • Jack Terwilliger
  • Julia Kindelsberger
  • Li Ding
  • Sean Seaman
  • Hillary Abraham
  • Alea Mehler
  • Andrew Sipperley
  • Anthony Pettinato
  • Bobbie Seppelt
  • Linda Angell
  • Bruce Mehler
  • Bryan Reimer
چکیده

Today, and possibly for a long time to come, the full driving task is too complex an activity to be fully formalized as a sensing-acting robotics system that can be explicitly solved through model-based and learning-based approaches in order to achieve full unconstrained vehicle autonomy. Localization, mapping, scene perception, vehicle control, trajectory optimization, and higher-level planning decisions associated with autonomous vehicle development remain full of open challenges. This is especially true for unconstrained, real-world operation where the margin of allowable error is extremely small and the number of edge-cases is extremely large. Until these problems are solved, human beings will remain an integral part of the driving task, monitoring the AI system as it performs anywhere from just over 0% to just under 100% of the driving. The governing objectives of the MIT Autonomous Vehicle Technology (MIT-AVT) study are to (1) undertake large-scale real-world driving data collection that includes high-definition video to fuel the development of deep learning based internal and external perception systems, (2) gain a holistic understanding of how human beings interact with vehicle automation technology by integrating video data with vehicle state data, driver characteristics, mental models, and self-reported experiences with technology, and (3) identify how technology and other factors related to automation adoption and use can be improved in ways that save lives. In pursuing these objectives, we have instrumented 21 Tesla Model S and Model X vehicles, 2 Volvo S90 vehicles, and 2 Range Rover Evoque vehicles for both long-term (over a year per driver) and medium term (one month per driver) naturalistic driving data collection. Furthermore, we are continually developing new methods for analysis of the massive-scale dataset collected from the instrumented vehicle fleet. The recorded data streams include IMU, GPS, CAN messages, and high-definition video streams of the driver face, the driver cabin, the forward roadway, and the instrument cluster (on select vehicles). The study is ongoing and growing. To date, we have 78 participants, 7,146 days of participation, 275,589 miles, and 3.5 billion video frames. This paper presents the design of the study, the data collection hardware, the processing of the data, and the computer vision algorithms currently being used to extract actionable knowledge from the data. MIT Autonomous Vehicle

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Intelligent Control System Design for Overtaking Maneuver in Autonomous Vehicles

The purpose of this study is to design an intelligent control system to guide the overtaking maneuver with a higher performance than the existing systems. Unlike the existing models which consider constant values for some of the effective variables of this behavior, in this paper, a neural network model is designed based on the real overtaking data using instantaneous values for variables. A fu...

متن کامل

A PFIH-Based Heuristic for Green Routing Problem with Hard Time Windows

Transportation sector generates a considerable part of each nation's gross domestic product and considered among the largest consumers of oil products in the world. This paper proposes a heuristic method for the vehicle routing problem with hard time windows while incorporating the costs of fuel, driver, and vehicle. The proposed heuristic uses a novel speed optimization algorithm to reach its ...

متن کامل

MANFIS Based Modeling and Prediction of the Driver-Vehicle Unit Behavior in Overtaking Scenarios

Overtaking a slow lead vehicle is a complex maneuver because of the variety of overtaking conditions and driver behavior. In this study, two novel prediction models for overtaking behavior are proposed. These models are derived based on multi-input multi-output adaptive neuro-fuzzy inference system (MANFIS). They are validated at microscopic level and are able to simulate and predict the fut...

متن کامل

Autonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach

Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...

متن کامل

Effects of Augmented Situational Awareness on Driver Trust in Semi-autonomous Vehicle Operation

Although autonomy has the potential to help military drivers travel safely while performing other tasks, many drivers refuse to rely on the technology. Military drivers sometimes fail to leverage a vehicle’s autonomy because of a lack of trust. To address this issue, the current study examines whether augmenting the driver’s situational awareness will promote their trust in the autonomy. Result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.06976  شماره 

صفحات  -

تاریخ انتشار 2017